Data assimilation experiment on SO₂ initial conditions in the Pearl River Delta

Yi-ang Chen^{a,b}, Xuejiao Deng^{a,*}, Bin Zhu^{b,*}

a Institute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou 510080, China b Nanjing University of Information Science and Technology, Nanjing 210000, China

Introduction	Results and Discussion														
As the air pollution problem become more and more severe, many air quality models were	Model	Eval	uat	ion		Co Table3 Sta	Drre	latio	on So sult with d	fferent co	orrelatio	n scales	of diffe	ent me	thods
developed and applied to research and forecast operation. However there are many uncertainties	Table 1 Statistical comp and observed meteoro	arison d logical p	of simul paramet	ated ers	Temperature ³⁰ ²⁵ ²⁰ ³⁰ ²⁰	Sites	S MAGE	Control	Method 1 OI 2)km 20km .79 4.59	30km 4	40km 50 8.84 10	km 60km 65 12.11	80km 13.62	100km 14.68
in the model, which affect the forecast result. Data assimilation is a state-of-the-art approach to	Guangzhou Mean Bias (MB)	T 0.23	RH -2.96	WS 1.70	$ = 10 $ $ = 0 $ $ = 0 $ $ = 0 $ $ = 0 $ $ = 0 $ $ = 0 $ $ = 0 $ $ = 0 $ $ = 0 $ $ = 0 $ $ = 0 $ $ = 0^{1/2} $	Assimilation	RMSE	27.08	EnSRF 1 OI 4 EnSRF 3	.68 2.55 .42 6.84 .30 4.65	3.40 10.42 5.92	 4.16 4.3 12.83 14 6.94 7.9 	375.519816.69908.99	6.31 18.43 10.16	6.81 19.68 10.88
reduce the uncertainties in input data, such as initial conditions or boundary conditions, by	Mean Absolute Gross Error (MAGE)	1.87	12.94	1.84	$\frac{120}{120}$	Validation	MAGE	23.91	OI 12 EnSRF 12	2.95 13.05 2.00 12.35 2.81 17.60	13.18 12.95	13.19 12 13.12 13 18.20 18	99 13.30 37 13.58	14.14 14.16	14.79 14.57 20.75
using observations. It can combine both		3%	3%	70%			RMSE	29.48	EnSRF 1	.01 17.00 6.75 17.08	17.70	17.84 18	29 18.51	19.41	19.99

advantages of model results and observations to improve the prediction.

In order to provide a more precise initial condition of SO₂ in the Pearl River Delta (PRD) region, data assimilation methods were introduced to the WRF-CMAQ model. Sensitivity experiments were carried out to exam the number of assimilation site and correlation scale. The comparative experiment on the optimal effect of different assimilation methods were conducted.

Methodology

Table 2 Statistical analyses of modelling performance on daily mean SO₂

SO ₂	ave	max	min
MB	9.42	41.87	-34
MAGE	17.79	41.87	5.14
NMB	61.11%	389.00%	-50.00%
NME	84.13%	389%	17%
RMSE	20.93	45.96	7.15
CORR	0.75	0.93	0.34

Generally, diurnal variations of temperature and relatively humidity are well captured by model, the simulation of wind speed and SO₂ are relatively high.

Background Analyses

Correlation scale decides the influence radius of the observation. The error of the analysis field increases with the correlation scale. Setting 20km will be more reasonable.

Different Methods

Fig.5 Comparisons of RMSE with and without assimilation using different methods (Assimilation sites 31, Correlation scale 20km)

007100EC2013	007100EC2013	007100502013
VVZTVDECZVTJ	UVZ IVDECZVIJ	

Fig.1(a) Nesting domain setting of the WRF-CMAQ model, domain 01(27x27km), domain 02 (9x9km) and domain 03 (3x3km); (b) Domain 03 shows the distribution of observation sites in the PRD region where we have the assimilation experiment.

The method used here is the Optimal Interpolation method (OI) and the Ensemble Square Root Filter method (EnSRF). The formula as follows:

Fig.3(a)Distribution of the monthly average concentration of SO₂ at the first model level;(b) Distribution of the standard error of SO₂ at the first model level;(c) Vertical profile of monthly average concentration of SO₂;(d) Vertical profile of monthly average concentration of SO_2 .

Horizontally, the high value region of error didn't fit the concentration well. Locate in southwest region;

Vertically, the variation of error and concentration are similar.

Fig.6 Distribution pattern of SO₂ concentration

As a whole, both assimilation methods reduced the error, the optimal result of EnSRF is better than OI;

Both methods adjusted the distribution pattern of SO₂ and make it more closed to the observation filed.

Conclusion

The simulation of temperature and relative humidity were well, but higher for simulation of the wind speed and SO₂ is relatively high by WRF-CMAQ.

The high values of the background error was mainly located in southwest region in horizontal direction. It was nearly constant below 400m and decreased with height above 400m.

The sensitivity test showed that the optimal horizontal scale was 20km. With the number of the assimilation site increasing, the optimization of the assimilation site had a declining trend.

 $K=B^{b}H^{T}(HB^{b}H^{T}+R)$

x^a :analysis field, x^b background field, x^{12} and x^{24} :12h and 24h forecast fields y^o: observation field, H: operator, B^b: background error covariance R: observation error covariance, N: number of ensemble , here is 30 Superscript : T and -1, transpose and inversion of Matrix

- and 'average and bias of ensemble

Constant below 400m, decrease above 400m.

Number of assimilation site

Fig.4 Comparisons of RMSE with assimilating different numbers of observations by OI

Increasing the number is beneficial for broadening the coverage of site. But the optimal effect of the assimilation site decrease with the number of observations statistically.

Under the same conditions, the optimization of EnSRF method is better than that of OI method. Both methods can provide an analysis field closer to reality.

Contact Information

* Corresponding author: Xuejiao Deng, **Institute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou, China** E-mail : dxj@grmc.gov.cn; •Corresponding author: Bin Zhu, Nanjing University of Information Science and Technology, Nanjing, China E-mail : binzhu@nuist.edu.cn